

m^mmmmm
■Qipgfmp n

UNCLASSIFIED
»■curity CI>«»l>if»tloii_

DOCUMENT CONTROL DATA ■ R «. 0

University of Washington
Department of Psychology
Seattle, Washington 98105

OUT »ECuHITV Ck «KiriC* TICK

UNCLASSIFIED
U*. 6NOU>>

J_
3 WCPOHT TITLK

A METHOD FOR BUILDING DATA MANAGEMENT PROGRAMS

* op i--RiPTiva HOft.% (T*p» ml Hpmt m* I*€hml9» dafm)

^-Scieptifjc Interim
jTMonis* JfSSfmim^mMmi Mtlml. Jmrnlmamm)

Earl Hunt aindGary Kildall

• NEPOUT O«T«

December 30, 1970
T«. TOT4L NO Or P*«I1

20
»». MO or «er«

W. CONTRACT O« ««.MT HO AFOSR - 7 0 - 19 44

6. »KOJCCT NO 7 1 IO

c 61102F

-. 681313

OTHCH «KPONT NOiitftor »riKwiw»»» «Miaar *• •••
IM* mpmrti

AFOSR-1^71-2853

Approved for public release-
distribution unlimited.

II *UP»I.CMBNT«nv NOTE*

TECH, OTHER

II. IPONtOMlNS MiLlTAII* «CTIVITT

AIR roRcr omcr or SCCNTIUC Rr^c/RCH CVt.)

.'Data management is usually done through a set of subroutines, called a kernel
package. The programmer using or modifying a system designed with the kernel
package need only grasp the few simple concepts and operations involved in the
kernel. This approach has been applied in the construction of three substantial
applications; a conversational version of computer language, a generalized
information retrieval system, and a system for graphics based information retrieval

DD FOR«
• NOV «t 1473 UNCLASSIFIED

~ Security ClssaUicalion

-J

i.i iiiiiiaiiijjiiiiui.ijiniK.wHnm^w'.un. JMHI'II n I > ■|pi.»,.ijinniii|i,il»l| ii»iii-|i' **m*limmwj ^»ii,iiiii.iMim.ini,u ■ nil!

A MHBI METHOD FOR BUILDING
DATA MANAGEMENT PROGRAMS

Earl Hunt
University of Washington

and

Gary Klldall
U. S. Navy Postgraduate School

Monterey, California

This research was partially supported by the National Science
Foundation, Grant NSF B7-1438R, the United States Air Force
Office of Scientific Research, Air Systems Command Grant
AFOSR 70-19A4 and by the University of Washington Institutional
Research Fund.

Computer Science Group
University of Washington - Seattle

Technical Report No. 70-12-09
December 30, 1970

D D C
'mm

M» 16 un

IEEED U E
B

Approved for public release;
distribution unlimited.

^mmmmamimmmm^mm^mmm^mm^

A ^■■■Bl METHOD FOR BUILDING

DATA MANAGEMENT PROGRAMS1

Programs to manage large amounts of intricately structured data are

hard to write. They are delivered late and usually contain many bugs when

delivered. Only indifferent success has been obtained from "generalized" data

management systems. The usual way to write large data management programs

Is to obtain the services of several wise old (or bright, young) hands

and hope that they will read Knuth (1969) and Lefkovitz (1969) before

setting out to reinvent the wheel. Usually this hope is not fulfilled.

The resulting code is often so replete with programmer specific or problem

specific tricks that it is hard to document, maintain, or modify.

We shall describe a method for the rapid construction of data

management programs. The basic idea is that all data management is done

through a set of subroutines, called a kernel package which we have found

helpful. The programmer using or modifying a system designed with the

kernel package need only grasp the few simple concepts and operations

involved in the kernel. The approach is somewhat akin to the approach

used to build complex gadgetry out of Heathkit or Digibit components,

hence the name of the paper. Our approach has been applied in the construc-

tion of three substantial applications; a conversational version of the APL

language, a generalized Information retrieval system, and a system for

graphics based information retrieval. At least one other organization has

also used our approach successfully. We shall first describe the technique

and then discuss the way it was used in each application.

i ■ 11 ■ ■ ■ ■ i ■ •*~9mmmmmim'*mmmmmmmmmtmm*&mwm*B*HI**^^i^^^*~^^^*^^^^^^*^^^**^^^^^^^^^^

Basic concepts. The term Level 0 storage will refer to word addressable,

fast access store (usually core memory), and Level 1^ storage will refer to

file oriented random access store, normally a drum or disk. We assume a

system which has both level 0 and level 1 store. The Ideas could easily

be generalized to a multi-level system. We also assume a user who writes

a program to manipulate data in level 0 store, using the FORTRAN or ALGOL

languages, but who has a very large amount of data that is to be held In

level 1 store and requested on demand. The kernel package is used to relieve

the user from worrying about either the management of level 1 store or the

interplay between level 0 and level 1 store. The kernel also provides the

user with commands for creating and manipulating very complicated data

structures without ever being forced outside of the confines of FORTRAN

or ALGOL.

Data structures. The user's data resides in a named file in level 1

storage. The kernel system divides the file in two ways. Physically the

file is organized into pages, which are brought into level 0 as needed.

The kernel system keeps track of the location of pages in both level 0

and level 1 store. Logically, the user's data is organized into units

which he manipulates directly. Insofar as the user is concerned, a unit

is a logically connected set of records in one of two types of formats. If

the unit is an ordered storage unit its entries are organized by fixed formats

called fields. These are established when the unit is created. One of the

fields is designated as the sort field. Within an ordered storage unit

records are kept sorted on the sort field. Sequential storage units contain

variable length character strings, placed in the unit wherever room for them

can be found at the time they are inserted. Ordered storage units are

^MMMMB^MM

m il.ii»^tww»»^pi^W^p^jf»p»BW»|||»|W^i^W|WliaBWWP!PWWWWWI1^^^Wi^^^"
1" " ■*'

■•■^^^f .^„^ _

typically used to provide indices by which particular strings may be found

in sequential storage units. A simple example is shown In figure 1.

Units are identified to the user's program by unit number. A unit is

created (and space reserved for it) only when the user's program calls the

appropriate kernel subroutine. Pages are created for units on demand. Page

creation and manipulation is done entirely within the kernel system, so the

user has no way of controlling or interfering with it.

System use. The subroutines within the kernel system are listed in Table 1.

They fall into three major groups. Storage malntalnence subroutines communi-

cate between the user's program and the computer's operating system, and

declare and release units. They also allow the user a small amount of

control in balancing the use of physical resources. The user may specify

the amount of level 0 memory to be reserved for pages (thus decreasing the

number of references to level 1 storage to get data needed by the user

program) and he may specify times at which page and unit assignments In

level 1 store are to be re-examined to see if better storage utilization

can be obtained by shuffling data between pages. The user does not control

the process of examination.

Storage interrogation and alteration commands allow the user to add, retrieve,

or delete items to, from, or in units. The Items are defined by naming

character strings, simple variables, or arrays in the user's program.

Finally, utility routines are provided to let the user determine the status

of the data created by the kernel system.

The paging method. Let us shift from the user's view of the system as a

package of subroutines to the systems program view, as a demand paging system

for data.

11mmvGmfSWQtBVlWflBBfjnißP-'l **'* ''"'^mmfm^' «'."^j-'-'-mw

FIGURE 1 3^-

ORDERED STORAGE

B • • / • •

/ ..

DOOLITTLE/ 00'

/ ..

/ ..

JOHNSON H/ 05'

/ ..

/

/ ..

ZIMMERMAN/ 12'

SORT POINTER
FIELD FIELD

SEQUENTIAL STORAGE

 T
.SIDNEY # 6332 W STATE STREET I
 I

T

i r
J 1 ARVEY # 07 @ AROLD # 09 I
I ^ / I

... I>§24
r^ r : NW VIRGINIA I ./..
I I

568 SE E

 r
MERSONI

I —i r
J[GEORGE # 232 E THIRD ST I

Jll I

THE " . . . " IN THE ABOVE SPACES

DENOTE PRESENT RECORDS WHICH

ARE UNSPECIFIED.

_<

ORDERED STORAGE PROVIDES ENTRY INTO SEQUENTIAL STORAGE

^_^I^MMMMHHaaH*^a •i^MMMMMI^MIHaiMHIH^I

mmrmmmmmmmm

"■"--< 5P.

TABLE 1

Storage malntalnence commands

1. NAME identifies the user's file to the kernel routines.

2. SEQUENTIAL designates a declared unit to be a sequential storage

unit. Unspecified units are assumed to be ordered storage.

3. ALLOCATE indicates the amount of level 0 storage to be used by the

paging system.

4. MAINTAINENCE orders that the assignment of level 1 space be

examined to determine if more efficient balance can be achieved between pages.

5. WRAPUP orders that file malntalnence be completed. It is used at

system termination of a user's run.

Storage interrogation and alteration commands.

1. STORESEQ stores a character string from the user's program into a

specified sequential storage unit.

2. SEARCHSTORE places a character string provided by the programmer

in a specified ordered storage unit in sorted order.

3. SEARCHORD searches an ordered storage unit for a specified record.

The location of the closest match found is returned.

4. STOREORD stores a string of characters in an ordered storage unit

In a specific location.

5. CONTENTS retrieves a record from a specific, programmer provided

location in a sequential or ordered unit.

6. DELETE removes records from ordered or sequential units.

7. RELEASEUNIT orders the kernel program to release to the garbage

area all pages attached to a particular unit.

Storage utility commands.

1. NEXTUNIT returns to the user program the unit number of the lowest

unasslgned storage unit.

2. SIZE returns the number of records in a specified unit.

3. UNITMODE returns the mode (sequential or ordered) of a specific command.

■

liMn—" ' m*mmm mijiiii miijw.mm^Kmi^i^mmmmmmmimimmmmiljBimi^^**!^'^'!*'**''."'!' ■'' ' I.MH.III.IIU . .ijmummmvmK mtwm".-. i ■ • t '»

When the user first Initiates the system he names a Level 1 file. The

kernel divides the file into pages. Each page consists of two parts; the page

descriptor and the page contents (user Information). The page descriptor

indicates the physical layout of user information in the contents area,

including the size of the free space area at the end of the page. The unit

number and type of the unit to which the page Is assigned is also in the page

descriptor. Any number of pages may be assigned to a unit. Assignment is

done by the kernel system in response to user needs.

The kernel system keeps track of page assignments through the use of an

index table in level 0 store. The entries in this table for all pages assigned

to a particular unit are stored sequentially. The table entries are descriptors

of the page. The relation between the index table and the pages is shown in

Figure 2.

In addition to the index table the kernel system maintains a Unit Table

which specifies the first and last entries in the index table assigned to

each unit. The Unit Table is also kept in level 0 store.

A basic principle of kernel system operation is that pages should be

shuffled as little as possible. Therefore, when a page Is assigned to a

unit a certain amount of blank free space is left at the end of the page.

As more data is moved into the page, the free space is used as a buffer

to avoid page overflows. If page overflows do occur new pages are allocated.

One of the major jobs of the MAINTAINENCE subroutine is to examine pages,

create new pages, and shuffle data between pages to avoid an imbalance

between contents and free space that may have arisen as data was mani-

pulated. This is done without moving data from level 1, by using

■

^^■AMA^^*M m^mmmm.^mmmmmmamemtmmmtmmmm

^m^mwmnmmm^^^mmmmmmmmmmm pnnniw^v^B'nmpw «I .1 1 m>*m

FIGURE 2
^Ou

INDEX TABLE

[0/0/34/3/BBB A;

[
[
[1/32/10/2/00000005/j!
[

Page k

[0/0/34/3/BBB
T
ICCCCC

J
Page descriptor for page k

Page k is a part of unit 3,

an ordered storage unit

Page j

T T
[1/32/10/2/000000051

r

Page j is the sixth page

assigned to sequential storage

unit 2.

RELATIONSHIP BETWEEN PAGE DESCRIPTORS AND INDEX TABLE

' ■ - —

mmm'mm~^*^mK^*i**^^^*m*mmmmmmmmmBmmmim'''imm

descriptors In the Index table. Having a free space area minimizes the

number of times malntalnence needs to be requested by the kernel system

Itself. Ideally malntalnence Is limited to the post run WKAPUP or to

times Indicated by the user's program. This Is particularly useful In

conversational applications, since MAINTAINENCE can be called while the

program Is awaiting input from a console. There is no chance of the system

becoming unresponsive, for the MAINTAINENCE subroutine (unlike WRAPUP)

returns periodically to see If the program which called it wishes to go on

to another task.

At run time copies of one or more pages may be held in level 0 store.

The exact number of copies held is determined by the user, through the

ALLOCATE command. The kernel system keeps track of the names of pages

in level 0, so that there are no unnecessary accesses to level 1. In general

it pays to have at least two pages In core, so that one may have available

portions of a sequential unit and portions of an ordered unit serving as an

index to the sequential unit.

This concludes our brief description of the kernel program. Kildall (1969)

describes it In much greater detail. The original kernel was written in

Burroughs Extended Algol for the Burroughs B5500 and is inextricably tied

to that machine. Two of the applications we will describe are B5500 programs.

A second kernel has been written in FORTRAN IV. We have attempted to make

It "machine independent" except where it Interfaces with the operatlngs system.

For Instance, the FORTRAN kernel must have the machine word and character

size specified to it. The FORTRAN kernel has been tested and used for an

application on the XEROX Data Systems Sigma 5, a 32 bit, byte oriented

2
machine. Subsequently we plan to test it on other machines.

MMUMiaMMaMMMaaMHMHMWflMMMM

immmm mm mm

'SM'VJ'I-'^irtM^fr.

Applications

B5500 APL. A conversational API Interpreter has been written for the

Burroughs B5500. The system Is similar to APL/360 (Falkoff and Iverson, 1968)

In Its outward characteristics. It Is a multi-user, conversational computing

system operating as a user program under the Burroughs B5500 Master Control

Program. B5500 APL Is Internally divided Into several components; a resource

management section which schedules work for the other components, a terminal

message handler for Input and output, a monitor command and function editor

section through which the user defines, edits, and traces the execution of

APL functions, and a compiler-simulator section which translates from APL

code to the order code of an hypothetical APL computer and then simulates

the action of that computer. These components are apparent to the user.

Quite hidden from him, but of central concern to use, is the virtual memory

management section, which controls the allocation of user space In level 1

store. This section is not specialized to APL. It could equally well be

used for any conversational computing application where the user needed

the Illusion of having a very large memory.

When an APL user enters the system for the first time he Is assigned

two storage units; an ordered unit called his name table and a sequential

unit called his data table. Since the system is designed for multiple

users, the numbers of these units cannot be predicted in advance. From

the viewpoint of the kernel system, then, the APL system program Is the user

and the APL user simply an Input source for the user program. The APL

system calls for units from the kernel as it needs them.

^■MMB mmtjaämtti

mm*mi^ m^m^mmmmmH^mmimmmmmmmmmm^mfm ■m^RsnqnpqRBVivpm mti'*i*'*'*f*mw*i mwH'u .ii—Ttr*?*f*^r^^m

In addition to calling for units when a user enters the system,

APL must call for units through its function editor, as the user builds

his library of programs and data. The APL user can declare three types

of names; scalar names, array names (for numeric or character arrays),

and function names. All names, regardless of types, are given entries In the

name table. If the name Is the name of a scalar variable Its current value

Is also kept In the name table. If the name Is an array name, ehe name

table entry contains a pointer from the name table Into the data table,

where the string of characters defining the array value Is located. When

the name Is the name of an APL function, the situation Is more complicated.

Upon user declaration of a function two units are created for it, the

function label table and the function test table. The label table Is an

ordered unit containing two types of entries. There Is one entry for each

line of text in the definition of the APL function definition. The line

entry contains pointers to the line definition, which Is stored as a

character string In the function text table.

Recall that from the viewpoint of the kernel, the APL system Itself

Is the user, and hence owns the file which the kernel is asked to organize.

The result of the above process is that the kernel creates on the APL

level 1 file a virtual memory for the APL user, containing his APL program

and the value of all his variables. Because the size of the units assigned

to a user can be expanded as needed (so long as there is room on the APL

file Itself) by causing the kernel to create new pages, the APL user has

the illusion of having a very lar-^e machine. The way this machine Is laid

i ■ - ■ ■ .-^.i——i-t-^ JJ^J.__^ .j.^ ami ■älllitfIMMJMI

ipwi^fiM^t

out In units Is shown In Figure 3. The unit arrangement Is transparent to

the APL user, Just as the page arrangement Is transparent to the APL system

programmer.

To operate the APL system must have an entry Into the units assigned

to each user. This is provided by a user state register (shown In Figure 3)

which, among other things, contains the unit numbers of the user's name and

data table. This Is all the system needs to retrieve any piece of information

about the status of the user's virtual memory. In practice, the user's APL

program is executed by bringing appropriate bits and pieces of it from the

level 1 file into a level 0 scratchpad area, where data is presented to the

APL compiler and simulated APL computer. Note that because of the elaborate

entry system into user virtual memory provided by the kernel program, only

a very small amount of APL program need be brought into level 0 at any one

time. For example, functions may be retrieved one line at a time. This

greatly reduces the demand on costly level 0 memory without restricting the

size of the program a user may write in APL.

A second interesting result of using the kernel system to keep virtual

memory in level 1 store is that the system is very hard to disrupt due to

computer system crashes. The APL system keeps In its level 1 file the

equivalent of a program counter for virtual memory. This program counter

is updated whenever new data is moved to or from the scratchpad to level 1.

When the machine crashes the level 1 APL file will contain sufficient

Information to restart the user from the point of the last level 1 access

before the crash. Typically, then, the amount of computing the user will

lose is measured in milliseconds. This is no small advantage to any inter-

active computing system.

tHMriMWhifar mm

wmrmm i^mm^mm rmmmm "I W"

FIGURE 3

9^

z
"NAMES"

(ORDERED)

USER STATE REGISTER

AM.
BBB
^TDEV
ZZZ

, | S(^LAR

FUNCTION LABEL
UNIT

(ORDERED)

QOOQOQOQ
QQQ1QQQQ
00020000

NAMES DATA I
"DATA"

(SEQUENTIAL)

USER STATE REGISTER

—H NUMERIC VECTOR

»< CHARACTER VECTOR I

•FUNCTION TEXT UNIT
(SEQUENTIAL)

STDEV E VE :s (♦/X)%

N :sRH0X (♦/(X-AV

E)»2)%N-1)*.5

RESULTING DISK LIBRARY

^
LIBRARY DESCRIPTIVE INFORMATION
AAA
STDEV

BBB
ZZZ

123'»

NUMERIC VECTOR CORRESPONDING TO
AAA. WITH LENGTH L. "X lOOOOOOOO
STDEV II lOOOlOOOoAvE % (♦/X)%'

OTT;
N-l)*.

N :=RHO
E)*2)%

0q020000((-»/(X-AV
5 | A [CHARACTER VEC

TOR CORRESPONDING TO ZZZ. WITH
LENGTH L If

THE FORMAT OF A LIBRARY

^Mtaaaaa iMM

■PWBPW»*!^^^—^^^»

The B5500 APL system, and with It the Extended Algol kernel program,

have now been In operation for over a year. We regard this as a stable

application of the Heathklt technique.

A generalized Information Retrieval System. The B5500 Extended Algol kernel

has also been used to construct a program called IRSYS, for defining and

operating information retrieval systems (Flnke, 1970 a,b). Like the APL

system, IRSYS is best thought of as a program by which the ultimate user

defines his application, and not as an application program in itself. Again

like the APL application, the IRSYS programmer is quite unaware of the kernel

system, although the IRSYS program writer uses kernel continually.

Externally IRSYS looks like any number of other Information retrieval

systems. Its basic user unit is the data set. A data set consists of

a reserved data set symbol, followed by one or more data set elements, and

an end symbol. A data set element consists of an element symbol and an

element value. The element value may be either a number or a character

string. For example, a data set defining a book might be written

/DSET

$AUTH0R MEADOW C.T.

$DATE 1970

$PUBLISHER WILEY

$C0MMENT TOPICAL TITLE

/END

The terms /DSET and /END are the data set symbol and end symbol, respectively.

$AUTH0R, $DATE, etc. are element symbols, and the strings following them

element values. A data set may have more than one element of the same type.

ii 11 - ■-• -

mmmmm***^*''" "»W" wmmmmmmmmmmmmmmmmmmmmmßmmm mmwgszs > *wmmm*m ..^■.'■--^■■^■"■.M..

10

IRSYS is used to define a file consisting of such Items and to retrieve Items

referenced by the values of different elements.

A user Interacts with IRSYS In three ways. In definition mode the user

states what the reserved symbols will be. Elements are defined to be

retrievable with character string values, as $AUTH0R In the example above,

numerically retrievable, with numbers as values as $DATE In the example,

or miscellaneous, non-retrievable elements ($C0MMENT above). IRSYS accepts

these definitions and reserves the necessary tables for the user dictionary

by calls to the kernel system. Unlike AFL, IRSYS is a single user program,

so the kernel is used to organize a separate IRSYS file for each user.

In retrieval mode the user writes queries above data sets by expressing

Boolean combinations of statements about the values of retrievable elements.

Relational statements may be used to reference values of numerically retrievable

elements. Thus the query for (($PUBLISHER WILEY) AND ($DATE .GT. 1960))

refers to all data sets with WILEY in a PUBLISHER element and with a $DATE

element greater than 1960. IRSYS will locate the data sets specified by

a query and report their number. It will print these sets only on command,

either on the line printer or on a console.

In storage mode the user stores data sets into his IRSYS file and

edits data sets already in the file. Obviously one definition session must

precede any other session, and at least one storage session must precede the

first retrieval session. Otherwise there is no fixed order to the sequence

of sessions in each mode. IRSYS can accept input either from a remote

console, as an interactive IR system, or from the card reader in batch mode.

A file established in batch mode may be interrogated from a console and

vice versa.

mmmm

Wim

11

Now let us look at how IRSYS uses the kernel system. Only a few

examples of the technique will be given, since there are many special uses

to allow for "pathological" user definitions such as one name's being

contained in another. Finke (1970a) discusses all applications of the

kernel with considerable detail and clarity.

Each retrievable element symbol has associated with it an ordered

storage unit which is created when the retrievable element is defined.

The value entry contains both the value name and a pointer to a second

unit in which the strings are the internal numbers of data sets which

have the appropriate element and value. Whenever a data set is entered

in storage mode it is assigned an internal number. Its elements are then

examined. The element name table of each element in the data set is

examined to see if the element value has appeared before. If it has,

there will be an appropriate entry in the element table, which will

point to a sequential unit. This unit contains a list of previous data

sets which have the same element and value as the new data set. The

internal number of the current data set is added to this list. If the

element value has never appeared before a new entry is made in the element

name unit (in the propsr place in the sequence) and a new, one entry list

is created in the sequential storage unit. The result is a set of cross

index tables pointing to lists of data set numbers, as shown in Figure 4.

In addition, when the data set is entered its entire text is converted to

an internal form (from which the original form is recoverable), and is

placed in a sequential unit called the DATA SET Table. An entry for the

tf^^MUM*

i n iLiuin.iiit>nw<ii<p niwuniJKupijigiKiiwi ULJI -■ -."'"..«■■i-"- m *"

FIGURE 4

//Ou

'AUTHOR' ORDERED
STORAGE LIST

ORDERED LIST OF
DATA SET NOS.

10

LIST OF DATA SET
NOS., SEQUENTIAL STORE

SEQUENTIAL TEXT OF
DATA SETS

TEXT OF
DATA SET 5

TEXT OF
DATA SET 7

TEXT OF DATA
SET 10

ORGANIZATION OF DATA SET FILES

IN IR SYSTEM

- - -- --

mmmm^mmm^m^m^^^

12

data set Is also made, under its internal number, In the Data Set number

table. The Data Set number table Is an ordered storage unit whose entries

point to the appropriate text In the Data Set Table. The result Is shown

in simplified form in Figure A. Not shown is another ordered set in which

IRSYS keeps a list of the element names and the number of their associated
3

units. IRSYS uses the kernel to keep this list and many others besides.

By examining Figure 4 one can see that given an element value, IRSYS has

the capability of finding data sets containing that element.

In Interactive information retrieval applications the user must often

sharpen his question before he locates the set of items he really wants.

For example, suppose we were Interrogating a file of cinema reviews.

The question "$RATING INDECENT" might locate 4970 data sets, while the

question $RATING INDECENT AND $DATE .GT. 1965 might find only 1004.

It would be more efficient if the questions were asked in series, and the

search for $DATE .GT. 1965 restricted to the set of data set numbers already

retrieved in response to the first question. To allow for such situations

IRSYS permits the user to "nest" his questions, first asking a question

which refers to a set of data sets, and then asking questions which are

understood to refer only to that set. The kernel system is used to

maintain the various temporary lists needed by IRSYS in this exchange.

IRSYS has now been In operation about nine months without maintalnence.

It has produced useful results for a number of users.

Graphic Information Retrieval. Our final example is different In a number

■ '—-

PHUPBUPPi—ii^wp— i. i . mmmmmmmmmmmmtmmmmmmHmmmmi^i^mmmmnt'tii'iJ.' \ w^^^^niw im** »m***^*****

13

of ways. The application Involves Che use of an XDS Sigma 5 to control

a graphic display device known as an ARDS .

A MAP MANIPULATOR program has been written In Fortran, using a Fortran IV

kernel, to allow the user to draw a map (or portions of a map) on the face

of the ARDS display. The map Is a conventional street map, composed of

streets, barriers, areas, and points of various types. Messages may be

associated with any map element. Speed indicators are associated with area

and streets. The MAP MANIPULATOR program Is not, itself, intended to do

anything useful. It is Intended to be a component in a larger system for

displaying information in a "command and control" situation in which the

user must observe and direct moving units, such as police patrol assign-

ments or air traffic control.

Initially the user "draws" the map on the ARDS display face using

the mouse. At any time he may edit the map or associate a message with

an element of the map. The user Indicates an element of interest either

by "pointing" to it with the mouse or by referring to its internal number.

(If the user does not know the Internal number of an element he may obtain

It by pointing and asking.) Once the user has established a map he may

ask that different portions of It be displayed, at different magnifications,

by zooming or windowing. Thus he has at his command roughly the capabilities

of a simplified SKETCHPAD system (Sutherland, 1963), specialized for map

manipulation.

The basic information unit of MAP MANIPULATOR is the MAP TABLE. This

Is a sequential unit whose records are strings in a language for defining

map elements. Each sentence in this language must conform to a BNF

syntactical specification. For example, the grammatical definition of

t

Md^M^MMMM N^^^MMMMMMaMniMMMfl

S"»W>SW-—..

1A

a road Is

<road>::» 1 <roadname> <route> | <road> <route>

<roadname>::■ {positive Integer}

<route>!:" <8peed> <llne>

<8peed>::" {negative number}

<line>::« {co-ordinate pair} {co-ordinate pair}

The associated semantics are:

1 is an identification symbol to aid in Interpretation. Remember that

this "language" is for strings that will be read by a program, not a person.

The <roadname> Integer is a pointer to an entry in the ROAD TABLE, an

ordered unit that will be described below.

The absolute value of <speed> indicates a multiple of the basic speed.

This is interpreted as the value of speed of movement along the road. It is

Intended for use in answering questions about best routes from one point to

another, or about the transit time along a particular route.

The co-ordinate pairs for the <llne> are the endpoints of a vector. In

the MAP TABLE they are in map co-ordinates, i.e. they refer to the scale of

the map, which may be much more than can be displayed.

ROAD TABLE is an ordered unit which contains one entry for each road in the

map. This entry contains pointers back to the string defining the road in the

MAP TABLE, and, if appropriate, to the string defining the road as displayed

(in display face co-ordinates) on the sequential unit DISPLAY TABLE. In

addition, a ROAD TABLE entry contains a pointer to a MESSAGE LIST table

entry. MESSAGE LIST is a sequential unit whose records are lists of

■ ' ■■■ ---*■

gjppipipp^lpBi^iiwiP^nimppw »wwpipwauFi iwnp.iiixKiiiiii .1 ii miii.m.,»PMjP!»w-ill), urn. ■...I^»»T: W»TIP>IM u.,.- —:. — ■

15

message numbers associated with a particular map element. Each message

number names an entry In the ordered MESSAGE TABLE, which In turn contains

a pointer to the message text In the sequential MESSAGE TEXT table.

The overall structure of the data defining roads In MAP MANIPULATOR

Is shown In Figure 5. Similar figures could be constructed showing tables

for barriers, areas, pointers and events.

We have pointed out that MAP TABLE defines elements In terms of map

co-ordinates. A DISPLAY TABLE unit, similar In form to MAP TABLE, defines

the elements actually being displayed at any one time In terms of display

coordinates. This Is necessary both for windowing and zooming and to

determine what element the user is pointing at with the mouse.

The structure of data in MAP MANIPULATOR gives us the potential for

asking a number of questions about graphically displayed data. For example,

one can display a map, Indicate an area by pointing at it, ask that the area

be displayed at an appropriate magnification, and either Insert or retrieve

messages about the area. Note that these messages could be entries into an

information retrieval system similar to one established by IRSYS. We have

not actually made this connection as yet.

Summary

Nothing we have reported is terribly exciting or new. Building complex

systems requires sophisticated tools. The Heathkit approach is an attempt

to make it easier to program complex information management systems, and to

produce programs that are easy to maintain and understand. Basically,

the approach will work if many systems can be designed with the same tools.

It will not work if every Information management problem Is unique. We

 .——— ^ "■'*—'

mmmmmmm w"^"""1 |■, "

^•V-H.*»!». ..„..,

FIGURE 5

If «s

MAP TABLE ROAD TABLE

/ / [STRING DEFINING ^ 9 1
ROAD 9 IN HAP

/

CO-ORDINATES
/

/ /

DISPLAY TABLE

STRING DEFINING

ROAD 9 IN DISPLAY

CO-ORDINATES.

MESSAGE TABLE

■♦ 7

MESSAGE LIST

-h (7, 12, 15 (MESSAGES

ABOUT ROAD 9)]

MESSAGE TEXT

[TEXT OF

MESSAGE 7]

STRUCTURE OF MAP MANIPULATOR

Mam^MtfiatiBMaiain MM^HHMMMHflMl

mwm ■yWWWUPI 1]| . .»IM J. ».Ml l" <-,|ill»l .1«"' l"^.H,H»i.. i i ™—..-...v|...^

16

think the Heathklt approach works well. While we certainly do not want to

disparage any of our colleagues who have worked on the various applications

we have described, we think It Is correct to say that none of them came to

these projects with any substantial background In system programming.

The timetable for the results was as follows:

B5500 was completed by one person working half time for six months.

MAP MANIPULATOR was brought to a nearly workable stage by two people

working quarter time for three months. A substantial part of this time

was spent checking the Fortran IV kernel system. The kernel system Is far

from simple, and obviously must work if anything else Is to work.

We believe this Is a good record. It may be, of course, that the

resulting programs execute very inefficiently. It is hard to determine

whether inefficiencies should be blamed on the Heathklt approach or on

the fault In a particular Implementation. In fact we are not at all sure

that inefficiency does follow from our approach. IRSYS has been used by

a number of people who have not complained about the bills. IRSYS contains

routines to monitor system operation, and this is currently being done.

AFL B5500 appears to be reasonably economic if the system on which it runs

Is not too heavily loaded. In any case, execution efficiency is not the

only criterion for system programming. There Is a good argument for bringing

up a working system quickly and then replacing it with a highly efficient one

at your leisure. How many microseconds are there in a month?

- ' ■-■—-'•—*~~**M~^***mmm

17

Acknowledgements

So many people have aided us at various stages that our acknowledgements

must perforce read like movie credits. We list them alphabetically by

project.

APL project. Hellmut Golde, LeSoy Smith, Sally Swedlne, and Mary Zosel.

IRSYS. Jeanne Finke.

FORTRAN IV Kernel. Thomas Kuffel

MAP MANIPULATOR. Jerry Jensen and Duane Sands.

And last, but not least, let us mention the first user who was willing

to rely on a Heathkit built system (IRSYS) to solve his problem, although

he did not have the slightest interest in advances in computer science.

Such a user always discovers the bugs In the perfectly checked out system.

Our user, Professor David Bonsteel of the University of Washington School

of Architecture, was no exception. May his buildings never crash.

wummumfmmmmmmmm m*mm u.,, i, . i » ■

Footnotes

1. Portions of this research were supported by the National Science

Foundation, Grant NSF B7-1438R, the United States Air Force Office of

Scientific Research, Air Systems Command Grant AFOSR 70-1944 and by

the University of Washington Institutional Research Fund. During the

Initial period In which the research was conducted, Gary Klldall held

a National Science Foundation predoctoral fellowship at the University

of Washington.

2. We are aware of a second FORTRAN kernel used to Implement a business

information system on a Digital Equipment Corporation PDF-10. We have

examined this kernel and, although It Is written In Fortran, we feel that

It uses so many (quite effective) machine dependent tricks that It Is

solely a PDP-10 program.

3. The observant reader may have noted that If this were all that IRSYS

did It would be unable to handle situations In which one term Included another

e.g. JOHN and JOHNSON, If both terms filled up one of the fixed fields of an

ordered storage unit. Such problems are handled In IRSYS by a rather complex

system of pointers from ordered to sequential units, the description of which

would add little to the current discussion.

4. 0 tempera.' o mores!

5. This Is a Computer Displays Incorporated Advanced Remote Display System

(ARDS). The ARDS Is essentially a storage type CRT, a keyboard, and a graphic

Input device known as a "mouse". By moving the mouse on a table the user can

^MäMHMHMMMMliMHI

tmmmmmm^^^mm0m

Footnotes (continued)

manipulate a point or vector on the display face, which can then be located

by the computer. In addition to the (hopefully) machine Independent kernel

system this application uses the systems software for controlling the mouse,

ARDS, and communication equipment which is part of the operating system of

the University of Washington Computer Science Teaching Laboratory (Hunt, 1970).

■ : _ .■ --. ■■ -■■ M^^M^MtiMM

WPfHim in »^mJ.Niw.'■■J'.-m"'""1'' - ' -

References

Finke, Jeanne M. A Generalized File Management System, U. W. Comp.

Sei. M.S. thesis, 1970(a).

Flnke, Jeanne M. A User's guide to the operation of an Information

storage and retrieval system on the B5500 computer. U. W. Comp. Scl.

Tech. Report 70-1-3, 1970(b).

Hunt, E. The Computer Science Teaching Laboratory at the University of

Washington. ACM, SIGCSE Bull. 2, 1970, 30-33

Iverson, K. and Falkoff, A. D. AFL/360: User's Manual. IBM Corp., 1968

Klldall, G. A. Experiments In large scale computer direct access storage

manipulation, U. W. Comp. Sei. Tech. Report 69-01, 1969.

Klldall, G. A. APL/B5500: The language and Its Implementation. U. W.

Comp. Sei. Tech. Report 70-09-04, 1970.

Knuth, R. D. E. The Art of Computer Programming. Vol. 1 Menlo Pk, Calif.

Addison-Wesley, 1969.

Lefkovitz, D. File Structures for on-line Systems. New York Spartan, 1969.

